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Motion of a tank-treading ellipsoidal particle in a shear flow 
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A theoretical model is developed for the motion of a human red blood cell in a shear 
field. The model consists of a tank-treading ellipsoidal membrane encapsulating an 
incompressible Newtonian liquid immersed in a plane shear flow of another incom- 
pressible Newtonian liquid. Equilibrium and energy considerations lead to a solution 
for the motion of the particle that depends on the ellipsoidal-axis ratios and the ratio 
of the inner- to outer-liquid viscosities. The effect of variation in these parameters is 
explored and it is shown that, depending on their values, one of two types of overall 
motion is exhibited: a steady stationary-orientation motion or an unsteady flipping 
motion. A qualitative agreement of the predicted behaviour of the model with experi- 
mental observations on red blood cells is found. 

1. Introduction 
Problems in which a viscous fluid interacts with a deformable particle are of con- 

siderable interest in the study of liquids such as blood, polymer solutions, and 
suspensions of liquid droplets. An understanding of the mechanics of the interaction 
between the liquid and the particle is important both for investigating phenomena 
of interest at the level of a single particle and for the bulk rheology of the suspension. 
One problem of this type that has received considerable attention, both experimental 
and theoretical, is the response of a human red blood cell to a viscous shear field. I n  
recent years improving experimental techriques have enabled the behaviour of red 
blood cells in a shear field to be directly observed. To complement these experimental 
observations several efforts have been made to model the problem theoretically. 
While the existing theoretical analyses provide some insight, they fall considerably 
short of adequately explaining all of the observed phenomena. I n  this paper a theoreti- 
cal analysis is developed for the motion of a human red blood cell in a shear field that 
provides a more complete model for understanding the observed behaviour. The 
qualitative results may also be applicable to problems involving other deformable 
particles. 

The resting shape of the human red blood cell may be described as a biconcave disk 
having a diameter of about 8 pm. The cell consists of a thin (70 A) biological membrane 
which encloses a Newtonian solution of haemoglobin (Cokelet & Meiselman 1968). The 
mechanical properties of the membrane material are such that i t  deforms easily a t  
constant area but strongly resists any change in area (Skalak et al. 1973). The total 
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surface area of the red-cell membrane is about 40 yo greater than that necessary to  
enclose the same volume by a sphere. Primarily owing to this ‘excess’ surface area, 
the thinness and mechanical properties of the cell membrane, and the liquid nature 
of the cell interior, the red blood cell is able to exhibit remarkable deformability. This 
deformability is of physiological significance because it enables the cell to pass through 
capillaries with diameters as small as 3 pm, contributes to reducing the bulk viscosity 
of blood in the larger vessels, and enhances oxygen transport to  the tissues by allowing 
mixing of the haemoglobin (Chien 1975; Schmid-Schonbein 1975). 

Several investigators have observed individual red blood cells in a Couette or 
Poiseuille flow field (Schmid-Schonbein & Wells 1969; Goldsmith & Marlow 1972; 
Fischer & Schmid-Schonbein 1977; Fischer, Stohr-Liesen & Schmid-Schonbein 1978a). 
It is found that a human red blood cell subjected to a shear field may exhibit one of 
two types of overall motion: an unsteady motion in which the shape of the cell remains 
essentially unchanged from its resting shape while the cell undergoes a flipping motion, 
or a steady motion in which the cell deformsinto an ellipsoid-like particle a t  astationary 
orientation with the membrane circulating about the cell interior similar to the motion 
of a tank tread. For example, Goldsmith & Marlow (1972) observed that human red 
blood cells in plasma a t  shear stresses less than about 1 dyn/cm2 will exhibit a flipping 
motion with little evidence of deformation (such as bending while flipping). However, 
in an isotonic medium having a viscosity about 30 times that of plasma a t  shear stresses 
greater than 1 dyn/cm2 they observed that the cells appeared as slightly deformed 
ellipsoids and oriented themselves a t  a constant angle with respect to the flow with 
their membranes appearing to tank-tread %bout the cell interior. The experiments 
indicate that, as the viscosity or shear stress of the external fluid is increased, the 
elongation of the cell increases and there is a transition from the flipping type of 
motion to the tank-treading, These observations have been supported by indirect 
optical diffractometric evidence on dilute suspensions of red cells (Bessis & Mohandas 
1975; Morris & Williams 1979). 

Existing theoretical analyses of a red blood cell when subjected to a shear field fall 
considerably short of adequately representing the observed physical phenomena. 
Using the fundamental solution of Jeffery (I  922), several studies have compared the 
behaviour of a red cell to that  of a rigid ellipsoid in a shear flow (Goldsmith 1967; 
Goldsmith & Mason 1967; Brenner & Bungay 1971; Goldsmith & Marlow 1972). 
While an ellipsoid may be a reasonable approximation for the shape of the red cell 
in a shear field, Jeffery’s theory for a rigid particle predicts only the observed unsteady 
flipping motion. The theory does not explain the steady motion in which the principal 
axes of the cell remain fixed with the membrane tank-treading about the cell interior. 

To account for this steady motion, a number of investigations have employed the 
theoretical work of Taylor (1932, 1934), Cox (1969), and others to model the behaviour 
of the red cell in a shear field as that of a liquid droplet (Brenner & Bungay 1971; 
Gauthier, Goldsmith & Mason 1972; Kline 1972; Fischer, Stohr & Schmid-Schonbein 
1978b). While this approach sheds some light on the steady motion, its validity for 
the non-spherical red blood cell is limited because the underlying theory is based upon 
the assumption of small deviations from a spherical shape. 

There have been a few analyses of the red cell in a shear flow using thin-shell theory. 
Brennen (1975), Guerlet, BarthBs-Biesel & Stoltz (1977) and BarthBs-Biesel (1980) 
have considered elastic or viscoelastic liquid-filled and initially spherical membranes 
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in plane Couette flow. Richardson (1974) has considered the motion of a linearly 
elastic and initially ellipsoidal membrane in a shear flow. These papers, in which the 
deformed shape of the particle was determined as part of the solution, are limited by 
the assumption of small deviations from the initial shape and do not assess the con- 
ditions under which the red cell undergoes the transition between unsteady and 
steady motion. 

This transition has been considered by Kholeif & Weymann (1974) in a two- 
dimensional model. The red cell was assumed to maintain a fixed shape resembling 
the cross-section of a resting red cell while immersed in a plane Couette flow. The 
cell was further assumed to contain a Newtonian liquid and to be bounded by an 
inextensible infinitesimally thin membrane that was allowed to have a tank-treading 
motion along the perimeter of the cell. The analysis predicted both the stationary 
orientation motion and the unsteady periodic flipping motion, with the type of motion 
exhibited depending on the shape of the cross-section and the ratio of the viscosities 
of the inner and outer liquids. While this two-dimensional study demonstrates the 
transition between the two modes of motion, its validity for the three-dimensional red 
cell is not entirely clear. 

Recently Keller ( 1 9 7 9 ~ )  and Keller & Skalak (1980) have considered the effect of 
a prescribed tank-treading surface velocity on an ellipsoid immersed in a shear flow. 
This parametric approach demonstrates how tank-treading affects both the stationary 
orientation and flipping motion of a three-dimensional particle, but it does not con- 
sider the effect of an internal liquid or the mechanics of an enveloping membrane. In  
this approach the problem is not closed in the sense that the motion depends on an 
arbitrarily assigned free parameter (the tank-tread frequency). 

To overcome some of these limitations, the present investigation considers the 
motion of an ellipsoidal membrane encapsulating an incompressible Newtonian liquid 
immersed in a plane Couette flow of another incompressible Newtonian liquid. One 
axis of the ellipsoid is assumed to be aligned with the vorticity vector of the undisturbed 
flow. The tank-tread motion of the membrane is given by a prescribed surface velocity 
that is kinematically similar to the experimentally observed tank-treading motion. 
The principal advantage of this approach is t,hat i t  allows a relatively complete 
mathematical analysis that exhibits many of the essential features of the problem. 
Furthermore, since the deformed shape of the particle is regarded as an independent 
rather than dependent entity, it is possible to explore how large changes in shape affect 
the overall motion. 

The motion of the particle is determined by equilibrium and energy considerations. 
The formulation of the problem is set forth in $ 2. The particle is assumed to be neutrally 
buoyant, and because the Reynolds numbers characteristic of red-cell motion are much 
less than unity, inertial effects are neglected. Then Stokes’ equations govern the fluid 
motions. I n  $ 3  a solution to these equations for the external liquid satisfying the 
appropriate boundary conditions based upon Roscoe’s (1967) adaptation of the classi- 
cal work of Jeffery (1922) is employed to find an expression for the resultant moment 
exerted on the particle by the outer liquid. The condition that the total moment on a 
freely suspended neutrally buoyant particle must vanish then yields an equation of 
motion for the particle. 

I n  addition to satisfying equations of equilibrium, the particle must also satisfy 
cor~scrvation of energy, i.e. the rate of dissipation of energy inside the particle must 
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FIGURE 1. Schematic drawing of a tank-treading fluid-filled ellipsoidal 
membrane in a shear flow. 

equal the rate a t  which work is done by the external fluid on the particle. The internal 
liquid motion and the rate of energy dissipation in the inner liquid is given in 9 4. 

I n  the present analysis, the mechanics of the membrane deformation is not specific- 
ally considered. Rather it is assumed that it is such that the ellipsoidal shape and 
prescribed surface motion results. Furthermore the rate of energy dissipation in the 
membrane is taken to be zero, which is equivalent to assuming that the membrane 
has no shear viscosity. While this assumption is almost certainly not valid for the red- 
cell membrane, it is made for the sake of simplicity and clarity. A method for modifying 
the analysis to include the energy dissipation in the membrane is given in $4. 

To assess the effects of changes in shape on the motion of the red cell, the particle 
representing it is assumed to be a member of the one-parameter family of ellipsoids 
having the same volume and surface area as the red cell. This family is determined in 
§ 5. Finally, in $ G the effects of particle shape and the ratio of inner- to outer-liquid 
viscosities on the steady and unsteady motions are evaluated. 

2. Formulation of the problem 
Let 5$ denote co-ordinates in a fixed Cartesian co-ordinate system and let xi denote 

co-ordinates in a second Cartesian system having origin coinciding with the fixed frame. 
The xg axis is assumed to coincide with the &3 axis, but the z1 and x2 axes are rotated 
through an angle 6 with respect to the and 22 axes (see figure 1) .  A positive value 
of 6 is taken to mean a counterclockwise rotation of the x1 and x2 axes as shown. In  
general 6 will be a function of time and 6 = d8/dt is the angular velocity of the x1 and 
x2 axes with respect to the 8, and e2 axes. 

Consider the ellipsoidal surface 8E having semi-axes ai (i = 1 , 2 , 3 )  defined by 

.:/at = 1.  (1) 
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The co-ordinate axes xi are the principal axes of the ellipsoidal body E interior to aE, 
and will be referred to as the body frame. 

The components of the velocity vector of the fluid external to 8E relative to the 
fixed frame but referred to:the body frame will be denoted by ai, and those relative to 
the body frame and referred to the body frame will be denoted by vi. The corresponding 
components of the velocity of the internal fluid will be denoted by a: and v;. The 
external and internal velocity fields must satisfy Stokes' equations and the continuity 
equation, which have the same form in both a fixed frame and a rotating frame. Thus 

pvi,jj = p,i vi,i = 0,  (2) 

(3) P vi,jj = P,i) 
I I  I I  

vi,$ = 0,  

where p and p' are the pressures and ,u and ,u' are the viscosities associated with the 
outer and inner fluids respectively. A comma followed by subscript i denotes differen- 
tiation with respect to xi. 

Far from the particle, the velocity field relative to  the fixed frame is assumed to 
approach a plane Couette flow with shear rate K .  The components of the undisturbed 
shear flow referred to the fixed frame are denoted by t2:: 

a! = K22,  &! = 0, 2: = 0. (4) 

Referred to the body frame this undisturbed motion is 

0: = K ( X ~  sin 0 cos 8 + x2 C O S ~  8) )  

0; = - K ( X ~  sin2 0 + x2 sin B cos B), 

a: = 0. 

Relative to the body frame and referred to the body frame the undisturbed motion is 

(6) 

where eiik is the alternator tensor. 
I n  order to study the possible motions of the ellipsoid E ,  its surface aE is assumed 

to  have a type of tank-tread motion. The surface velocity v$ relative to and referred 
to the body frame is assumed to be 

v; = 0: - 0€i3kxk, 

win = v( - .,/a2) x2,  = v(a,/u,) xl, vjn = 0,  (7)  

where v is a parameter having the dimensions of frequency. I n  general, v may be a 
function of time. It will be determined later as part of the solution. Considering the 
model as a red blood cell, the velocity vy is a prescribed motion of the membrane. 
Relative to the fixed frame but referred to the body frame this membrane motion is 

6$ = vy++€ijkXk. (8) 

It is readily shown that v? represents a tank-tread motion. First note that the 
components in the body frame of the unit outer normal to 8E are 

ni = (xi/at) (x?/a?)-+ (sum o n j ,  no sum on i). (9) 

Thus vyni  = 0,  i.e. vy is everywhere tangent to aE. Further, since vp = 0,  material 
surface points move along elliptical paths in planes parallel to the (xl, x2)-plane. For 
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t = t ,  t = f ,  

FIGURE 2. Kinematics of the surface velocity. Material-surface points move along elliptical paths 
in planes parallel to  the (z,, z,)-plane. Material-surface points having the same polar anglo q5 
at any initial instant have equal polar angles a t  all future times and remain in a plane. 

positive and negative values of v the membrane motion is respectively in the counter- 
clockwise and clockwise sense when viewed from the positive x3 axis, It may be shown 
that the Lagrangian description corresponding to (7 )  is given by 

(10) i 
xl(xO, t )  = x! cos w - (a,x~/a,)  sin w, 

x2(x0, t )  = x; cosw + (a,$/a,) sin w ,  

x3(x0,t) = x:, 

where r t  

and xo = (xy) is the position of a material surface point a t  time t = 0. Equations (10) 
and (1 1) imply that if v is constant the membrane moves completely around the cell 
interior with period 7 = 2n/lvl. From (10) it may be shown that the polar angle des- 
cribing the angular position of a material surface point is 

tan q50 cos w + (a,/u,) sin w 
cos w - (.,/a2) tan 4O sin w 

q5 = arctan (x,/x,) = arctan 

where q50 = arctan (xi/x?) is the polar position angle a t  t = 0. Equation (12) shows 
that the membrane motion is synchronous in the sense that material surface points 
having the same q50 (i.e. lying in a plane containing the xg axis a t  t = 0) have the same 
4 a t  time t ,  and so again lie in a plane containing the x3 axis (see figure 2 ) .  

While ( 7 )  represents a tank-treading motion, it may be shown that it is not locally 
area-conserving (Secomb & Skalak 1981), and as such cannot precisely represent the 
actual motion of the red-cell membrane. Nevertheless, it is similar to the experimental 
observations, and this simplified motion allows explanation of several aspects of the 
problem. Accordingly, the boundary conditions imposed on the outer and inner 
liquids are 

(13) vi = v y  onaE,  
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3. External flow and equilibrium 
Roscoe (1967) has shown how the classical work of Jeffery (1922) may be adapted 

to derive a solution to the external-flow problem posed by ( 2 ) ,  (13) and (14) for the 
case 8 = 0. His approach rests upon the observation that the disturbance velocity 
created by an ellipsoid immersed in a linear flow with a surface motion that depends 
linearly on xi is the same as the disturbance velocity created by a rigid ellipsoid im- 
mersed in another linear flow. Thus Jeffery’s result for rigid ellipsoids in linear flows 
can be used to find the velocity field and surface-stress vector for ellipsoids having a 
surface motion that depends linearly on xi. Roscoe’s solution can be readily extended 
to the more-general case 8 + 0 by adding the solution for a rigid ellipsoid rotating in 
an otherwise quiescent fluid. This solution can also be obtained from Jeffery’s original 
result. 

The external velocity field for the general case 6 + 0 will not be given explicitly 
here, but for equilibrium and energy considerations the stress vector exerted by the 
external liquid on the particle will be given in some detail. It can be shown that the 
components of the surface-stress vector referred to the body frame are given by 

where p“ is an arbitrary constant pressure and e z  is defined by 
em = l(vm. + vm.) 

a? 2 1 .a  a,? 

where vy is the velocity field (7)  taken as applying for all xi. The strain rate e? and 
the tensor A: are independent of xi. The element AT, is 

Ti = -p”ni+,u(A$ + 2eE) n j ,  (16) 

(17) 

(19) 

(20)  

e,T. = eJJj -el?! where 23 

eo ti = &(Sq,i + Sy, j ) .  
The symbols g i ,  gi,  g:, . . . denote certain integrals that depend only on t,he shape of the 
ellipsoid. The integrals g,, g; and g;/ are given by 

where A2 = (a? + s )  (a; + s) (a; + 8) .  

Here, the ai are the dimensionless axes defined by 

where a, = (a,a2a3)S. The elements A& and A& and the integrals g,, g;, g,“, g3, gi and gl 
may be obtained by the appropriate permutation of the subscripts in (18) and ( 2 1 ) .  
For the off-diagonal terms of A; the typical element is 

cci = Ui /U, ,  ( 2 2 )  
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where G = G j  - c3, (24) 

(251 G j  - d%,i - %,jL 
cg = $ ( v z i - v c ) .  (26) 

0 - 1 &I A0 with 

Here wk is the angular velocity of the ellipsoid with respect to the fixed frame. The 
other off-diagonal terms may be obtained by the appropriate permutation of the 
subscripts in (23). 

Equation (16) is valid for an ellipsoid immersed in any undisturbed velocity 3; that 
is linear in xi, where the ellipsoid has any surface velocity v y  that is linear in xi and 
has any angular velocity wi. For the present problem 3: is given by (5), wy by (7) ,  and 

w1 = 0, o2 = 0, w3 = 0. (27) 

The stress vector may be written as 

Ti = c i jn j ,  (28) 

where c i j  = -p”& + p ( A $  + 2eG). (29) 

By virtue of the linearity of 6: and Sin in xi, cii is independent of xi. I n  the present case 
i t  may be shown that in general 

c13 = c23 = c32,  (30) 

but c12 =k cz1. (31) 

The components of the resultant force exerted by the external liquid on the ellip- 
soidal particle a t  any instant in the body frame are given by 

r c = j  c i j n j d A .  
aE 

However, as the integral of any odd function of xi over the ellipsoidal surface is zero, 

Fi = 0. (33) 

This result is obvious from the antisymmetry of the problem. The components of the 
resultant moment about the origin exerted by the external liquid on the ellipsoidal 
surface a t  any instant in the body frame are 

where eiik is the alternator tensor. To evaluate (34) it is very helpful to make use of 
the fact that 

xini d A  = V (no sum), (35) I m  
where V is the volume of the ellipsoid. Equations (301, (31) and (35) lead to  the result 
that the only non-vanishing moment component is 

M3 = V ( C 2 , -  c12) .  (36) 

After substituting for cZ1 and c12 using (29) and some algebraic manipulation, it may 
be shown that 

M3 = M f  + M [  + MT, (37) 
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N? = - gk[a2,(  1 - cos 28) + u;( 1 + cos 28)], 

M $  = - C0(uZ, + a”,, 

MT = - C2al a2 v, 

35 

(38) 

(39) 

(40) 

where 

with 

The term M: is the moment, due to the shear flow (4),  acting on a stationary rigid 
ellipsoid inclined a t  an angle 8 (i.e. 6 = v = 0 ) ;  HT is the moment acting on a rigid 
ellipsoid flipping about the x3 axis with angular speed 4 in a fluid a t  rest a t  infinity 
(i.e. v = K = 0 ) ;  and MZ is the moment acting on a stationary ellipsoid undergoing 
the tank-treading motion (7) in an otherwise-quiescent liquid (6 = K = 0) .  

Now consider a membrane-enclosed fluid-filled particle of arbitrary shape immersed 
in an external flow. Assume that the particle is neutrally buoyant and that no forces 
or couples are exerted by any external agency. Further assume that inertial effects 
are neglected throughout. Under these conditions the stress distribution in the inter- 
nal fluid is such that every volume element of the internal fluid is in equilibrium. 
It follows that the internal fluid cannot exert a resultant force or moment on the 
membrane. Now the entire membrane, considered as a free body, is also in equilibrium 
a t  each instant in time. Consequently the resultant force and moment exerted by the 
external liquid on the membrane must vanish a t  every instant. For the present 
solution, the only force or moment component that does not vanish identically is M3. 
Therefore equilibrium requires 

M 3 =  Mf+Mg+MT = 0. (42) 

s = A + B c o s 2 8 ,  (43) 

Substituting (38)-(40) into (42) yields an equation for the flipping velocity: 

where 144) 

Equation (43) was first given by Keller ( 1 9 7 9 ~ ) .  Notice that the semi-axis length a3 
and the viscosity ,u of the external liquid enter in the expression for each of the moments 
(38)-(40), but as a consequence of the cancellation of C from each term in (42) they 
do not appear in the equation of motion (43). 

4. Internal flow and conservation of energy 

the interior of the ellipsoid: 
The solution for the internal velocity field v, is the surface velocity (7) extended to 

v; = v( - al/a,) x,, v; = v(a2/al) xl, vi = 0 in E .  (46) 

It is easily verified that vi given by (46) satisfies (3) and (15) with p’ constant. This 
solution for the internal liquid motion is unique for the given surface motion (cf. 
Skalak 1970). 
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The dissipation function corresponding to v; is 

CDI = p’fi v2, 

where fl = ( r 2 - G 1 ) 2 ,  

and r2 is the first of the two axis ratios defined by 

(47) 

(48) 

r2 = a2/a1, r3 = .,/al. (49) 

Since CD’ is spatially homogeneous, the rate a t  which energy is dissipated in the inner 
liquid is simply CD’ times the volume of the ellipsoid: 

D’ = V , U ’ ~ ~ V ~ .  

Energy is also dissipated within the red-cell membrane. Although the membrane 
volume is two orders of magnitude smaller than the haemoglobin solution volume, 
because of its high shear viscosity (Evans & Hochmuth 1976; Chien et al. 1978) the 
energy dissipated in the membrane may exceed that in the haernoglobin solution. 
Fischer (1980) has recently made preliminary estimates of the rate of energy dissi- 
pation in the membrane and in the haemoglobin solution for a tank-treading human 
red blood cell over a range of external-flow shear rates (28-575 s-l). His calculations 
are based upon kinematic data for the membrane motion and the reported values for 
the membrane and haemoglobin solution viscosities. He found that, although both 
dissipation rates shcwed a strong increase with increasing external, flow shear rate, 
their ratio was essentially constant and of the order of 1.  

I n  the present analysis, for the sake of simplicity and clarity, the energy dissipated 
in the membrane is assumed to be zero. However, if it is assumed, as Fischer’s results 
seem to indicate, that  the rat,io of the rate of energy dissipation in the membrane to 
that in the inner liquid is a constant (that is, independent of the shape of the cell 
and the external-flow shear rate), then it is a simple matter to account for the energy 
dissipated in the membrane by replacing p‘ in (50) with an apparent internal viscosity 
pkpp defined by 

where d is the ratio of the rate of energy dissipation in the membrane to that in the 
inner liquid. The quantity D’ in (50) would then represent the rate a t  which energy is 
dissipated in the inner liquid and in the membrane. 

The energetics of the system provide a constraint on the possible motions. The 
energy dissipated inside the cell must be supplied by the external fluid. The rate a t  
which the external flow does work on the element of area dA of the ellipsoid is TiOpddA. 
By employing (28), the total rate a t  which the external flow does work on the particle 

may be expressed by r 

By employing (8), ( 5 2 )  may be written as 
* n 

The last integral in (53) is M3, and vanishes because of the equilibrium condition (42). 
Therefore r 
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Note, that for a non-tank-treading ellipsoid (wy = 0 ) ,  (54) implies Wp = 0. This means 
that the external flow would not do any work on the particle. However, as is well- 
known (Jeffery 1922), there would be additional energy dissipation in the external 
flow due to the presence of the particle. 

By substituting for cij in (54) and employing (7),  (35) and (43), it  may be shown that 

1% = Vp(f2v2+ f 3 K V  cos28), (55) 

where f 2  and f 3  are functions of the axis ratios r2 and r3 given by 

f 2  = 4231 - 2/z2), f 3  = - 4z1/z2, (56h (57) 

where z1 = &(r;1--r2), z2 = gA(a2,+cc.i). (58)J (59) 

Although the integrals gi, g;,  g; from (21) and (59) are most conveniently expressed 
using the dimensionless axes ai (22), they also may be regarded as functions of r2 and 
r3 alone, since 

cI1 = r;+r;+, cx2 = rir;+, a3 = r;+rf .  (601, (GI), (62) 

Conservation of energy requires that the rate a t  which work is done on the particle 
be equal to the rate a t  which energy is being dissipated inside the particle. This con- 
dition is expressed by the equation 

W, = D'. 

Equation (63) provides a constraint on the allowable motions of the particle and it 
must be simultaneously satisfied along with (43). By substituting (50), (51) and (55) 
into (63) it is found that either 

(63) 

v = o  (64) 

or Y = - f 3 [ f 2  - (p7p)f11-1 cos 28. (65) 

Equation (64) corresponds to a rigid (non-tank-treading) ellipsoid which does not 
dissipate energy. In  this case Wp and D' are both zero. On the other hand, (65) gives 
the circular frequency of tank-treading for an ellipsoidal particle of fixed shape with 
viscosity ratio p'/p. This equation implies that, if the particle is stationary (i.e. 
8 = const.), the circular frequency of tank-treading is constant. However, if the par- 
ticle is flipping, v varies with time or equivalently with 8. In  this case the direction of 
the tank-treading motion changes as 0 passes through odd multiples of in. For r2 
and r3 less than 1, the coefficient of K cos 28 in (65) is negative, and the sense of the 
tank-tread motion is indicated in figure 3. Experimental observation of this type of 
oscillatory tank-tread motion has apparently not been reported. This may be because 
of difficulty in observing a membrane motion on a flipping red cell. 

By substituting (65) into (44) v can be eliminated and the equation of motion of 
the tank-treading particle becomes 

8 = A+Bcos20,  (66) 

where A = - 1 K  2 ,  (67) 

(68) = 2K{& + ' ; ' f 3 [ f 2 -  (p'/~)fll-l} zl/(r?l + '2). 

Integration of (66) indicates how, for a given shear rate K ,  the motion of the particle 
depends on rP, r3 and p'/p. 
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v = o  

FIGURE 3. Direction of the tank-tread motion in different octants of the (2,,&)-plane for 
1 3 r3 3 r2.  For Y < 0, the tank-treading is in the clockwise sense. 

5. Ellipsoids of constant sphericity index 
To apply the above theory as a model of a red blood cell in a shear flow it is pertinent 

to consider a family of ellipsoids having constant volume and constant surface area. 
The volume of the resting human red blood cell is about 94 pm3 and its surface area 
is about 135,um2 (Evans & Fung 1972). Under most conditions a red cell will have 
the same volume and surface area as its resting shape. Experimental observations 
suggest that the shape of a red cell in a shear flow may be approximated by an ellipsoid 
(Fischer & Schmid-Schonbein 1977). At low shear stress the red cell is only slightly 
deformed from its resting shape and resembles an oblate spheroid. At higher shear 
stress the cell is an elongated but flat ellipsoid. At still-higher shear stress the cell 
resembles a prolate spheroid (Sutera, Mehrjardi & Mohandas 1975). 

With the assumption that the red cell is an ellipsoid of known volume and surface 
area, specifying any one of the semi-axes determines the other two. The surface area 
of an ellipsoid is a function of its three semi-axes but no simple closed-form expression 
exists for the area when a, + u2 + u3. Keller (1979b) has developed a convergent 
series for the surface area of a triaxial ellipsoid. If u1 2 a3 2 a2, the surface area is 
given by 

9 (69) 
27Ta1u2 u2 1 -7j [( 1 - u%/uf) - T ~ ] )  

arcsin 
[ ( I - a:/ui) - T ~ ] *  (1 - T j ) 4  

#(a,) = - c. -+ n j=1u, 

where 7 j  = (1 -u~/a~)cos2[(2j- I)n/(2n)], (70) 
and n is an integer. As n -+ m, the formula converges to the exact surface area and 
with n = 40 it is accurate to I 0  significant digits for most cases. The volume of any 
ellipsoid is given by 

(71 )  V(a,) = $7rUlCL2U3. 
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a1 a2 a3 rz = 4% r3 = asla1 

4.296 1.229 4.296 0.286 1.000 
4-488 1.230 4.110 0.274 0.916 
4.680 1.232 3.935 0.263 0.841 
4.872 1.235 3.770 0.253 0.774 
5.064 1.238 3-617 0,244 0.714 
5.255 1.244 3.468 0.237 0.660 
5.447 1.251 3.328 0.230 0.611 
5.639 1.258 3.196 0.223 0.567 
5.831 1.268 3.068 0.217 0.526 
6.023 1.278 2.946 0.212 0.489 
6.215 1.290 2,830 0.208 0.455 
6,407 1.303 2-718 0.203 0.424 
6.599 1.319 2.606 0.200 0.395 
6.791 1.337 2.498 0.197 0.368 
6.983 1.358 2.392 0.194 0.343 
7.174 1.383 2-286 0.193 0.319 
7.366 1.414 2.178 0.192 0.296 
7.558 1-452 2.066 0.192 0.273 
7.750 1.513 1.934 0.195 0.250 
7.942 1.690 1.690 0.213 0.213 

TABLE 1. Semi-axes (in pm) of 20 ellipsoids having volume 95 ,urn3 
and surface area 135 ,urn2 (sphericity index = 0.746) 

If the specified surface area and volume are So and V,, then (69) and (7 1) give a pair of 
equations 

that define implicitly a one-parameter family of ellipsoids having the given surface 
area and volume. For given values of So and V,, (72) and (73) can be solved by numerical 
iteration for a2 and a3 with the major semi-axis a1 as a parameter. However, a solution 
exists only for a finite range of values of a,. The ellipsoid with the smallest major axis 
is an oblate spheroid (a, = a3 > a2) ,  while the ellipsoid with the largest major axis is 
a prolate spheroid (al > u3 = a2) .  Table 1 indicates the results for V, = 95 pm3, 
So = 135 pm2, and a number of a, values. 

In the red-blood-cell literature one measure of the shape of the cell often used is the 

(74) 
sphericity index s defined by = (6niV)+/S. 

The sphericity index is unity for a sphere and less than one for any other shape. For 
the set of ellipsoids having a constant sphericity index, say so, it can be shown that 

r3 )  = go,  (75) 

#(a,) = So, V(a,) = V, (7% (73) 

where r2 and r3 are the axis ratios (49), and the function s(r2, r3)  is obtained by sub- 
stituting (69) and (71) into (74). Values of r2 and r3 in table 1 are solutions of (75) for 
so = 0.746. 

6. Motion of the particles 
The angular motion of the ellipsoid is governed by the differential equation (66). 

For a given shear rate K the coefficient A (67) is determined, and the coefficient B (68) 
is a function of the axis ratio r3,  viscosity ratio p'/p and sphericity index so. The axis 
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FIGURE 4. Transition value of viscosity ratio p'/p as a function of axis ratio r 3  for fixed values 
of the sphericity index so. Also shown are points representing experimental observations of 
Bessis & Mohandas (1975) ( x , p,' = 8.9 cP; a, 18.4 cP) and of Morris & Williams (1979) (0, 
p' = 10.3 cP), 

ratio r2 is implicitly determined from (75).  It is assumed for convenient discussion that 
1 

There are two types of solutions to (66). If B > - A ,  the solution for 8( t )  is transient, 
with the angle O ( t )  asymptotically approaching a constant value 8". If B < - A  the 
solution for O ( t )  is periodic, corresponding to a flipping motion of the ellipsoid. The 
transition between flipping motion and stationary orientation occurs when B = -A. 
This equation specifies a relationship between r3, p'/p and so a t  which this transition 
takes place. Figure 4 is a plot of the transition value of p'/p as a function of r3 for two 
values of so. Each curve represents a threshold for stationary orientation (or flipping). 
The region above each curve corresponding to a fixed value of so yields solutions for 
which the particle would be flipping. For values of p'/p below the curve, the particle 
would assume a stationary orientation. The curves begin a t  a non-zero value of r3 
because there is a non-zero minimum of r3 for any given so (corresponding to the prolate 
spheroid with that so). 

The curves indicate that for a given so the transition value of p'/p is fairly insensitive 
to the value of r3 until the particle is quite elongated, say r3 < 0.4. For r3 < 0.4 the 
threshold value of p'lp increases with increasing elongation (i.e. r3 decreasing). 
Furthermore, it can be seen from figure 4 that increasing the sphericity index or the 
elongation tends to promote a stationary orientation, while increasing the viscosity 
ratio drives the particle toward flipping like a rigid ellipsoid. 

Also shown in figure 4 are points representing the threshold values of p'/p obtained 

r3 r2 and that K is positive. It may then be shown that B is always positive. 
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from the experimental observations of Bessis & Mohandas (1975) and Morris & 
Williams (1979). These investigators found, through diffractometric observations on 
dilute suspensions of human red cells in viscometric flows at  constant shear stress, 
that there was a threshold value of suspending liquid viscosity p below which no 
elongation was observed. These observed thresholds are assumed to correspond to 
the transition from flipping to stationary orientation. To interpret the experimental 
data in the terms used here, the values for pf were taken from haemoglobin viscosities 
reported in the literature (Cokelet & Meiselman 1968; Chien, Usami & Bertles 1970), 
and were adjusted for the reported temperature and osmolarity. It is assumed that 
the red-blood-cell shape a t  the threshold value of pf /p  could be approximated by an 
oblate spheroid, and hence the points are plotted for r3 = 1. 

The experimental values of p'/p a t  the threshold between flipping and stationary 
orientation are in the range of about 1.4 to about 1.8. The theoretically predicted 
thresholds for ellipsoidal membranes without shear viscosity are in the range of about 
2.8 to about 3.2. The difference between theory and experiment may be due to dissi- 
pation in the membrane. To account for the effect of the membrane in an approximate 
fashion the theoretical curves might be regarded as specifying the ratio of the apparent 
internal viscosity pkpp (51) to the external viscosity p. This then determines the 
dissipation ratio d, via (51). The results indicate that d is of the order of 1-0. If d is 
taken to be 1 (as suggested by Fischer's work), then the theoretically predicted value 
of the threshold viscosity ratio pf/p is in the range of about 1.4 to about 1.6, which is 
in reasonable agreement with the experimental observations. 

For B > - A  the solution to (66) is 

where 

and 8, is the initial 

where 

Since 0 6 - A/B < 

[ ( B 2 - A z  ) I? D exp [2(B2 - A2)9 t ]  - 1 1 ' B + A  Dexp[2(B2-A2)it]+ 1 
O ( t )  = arctan 

(B2- A2)% tan 8, -i- A + B 
(B2 - A2)9 tan 8, - A - B 

D =  

value of 8 a t  t = 0. It may be shown from (76) that 

lim 8( t )  = 8*, 
t-tm 

6* = iarccos ( - A/B). 

1, i t  is seen from (79) that  

(77) 

(78) 

(79) 

0 6 8" 6 1.. (80) 
Figure 5 is a plot of the angle of inclination 8* versus r3 for three pairs of viscosity 
ratio p'/p and sphericity index so. It is seen that the angle of inclination generally 
decreases with decreasing r3, increasing pf /p  and decreasing so. As indicated in (51) 
the variation of 8* with d would be in the same sense as with pf/p.  Also shown are 
estimates of 8* made by Fischer (1980) from experimental observations on a human 
red blood cell with p'/p = 0.44 and so = 0.679. The general range of 8" values and 
trend with decreasing r3 of the present analysis exhibit a qualitative agreement with 
Fischer's estimates. 

By substituting (79) into (65) it may be shown that the circular frequency of tank- 
treading for the stationary-orientation case ( B  > - A )  is given by 

v* = f J f 2  - ( P f / P ) f J 1  W B .  (81) 
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FIGUR 5. Plot of stationary angle of inclination 8* vs. axis ratio T~ for three pairs of viscosi 7 

ratio p'/p and sphericity index so with the dissipation ratio d = 1. Also shown ( x ) are points 
estimated by Fischer (1980) from experimental observations with p'/p = 0.44 and so = 0.679. 

The sign of v* is negative, and thus the tank-tread motion is always in the clockwise 
sense when the particle assumes a stationary orientation. Figure 6 is a plot of - v*/K 
versus r3 for three pairs of p'/p and so. The dimensionless circular frequency of tank- 
treading - v*/K generally decreases with decreasing r3, increasing p'/p and decreasing 
so. This predicted behaviour is consistent with the experimental observations of 
Fischer et al .  (1978b).  Also shown are points corresponding to the experimental obser- 
vations by Fischer (1980) for p'/p = 0.44 and so = 0.679. The theoretical prediction 
of tank-treading frequency is seen to agree qualitatively with the experimental obser- 
vations. 

For B c - A  the solution to (66) is 

where to is the time a t  which 8 = 0, and T is the period of flipping through an angle 7 ~ .  

It is given by 
(T = nA2- B2)-&. (83) 
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FIGURE 6. Plot of non-dimensional circular tank-treading frequency - V * / K  V.S. axis ratio rg for 
three pairs of viscosity ratio p' /p and sphericity index .so. Also shown ( x ) are the experimental 
observations by Fischer (1980) on a human red blood cell with p'/p = 0.44 and so = 0.679. 

It is seen from (66) that for positive K the flipping motion is in the clockwise sense, so 
e(t) is negative. Figure 7 shows --19/n over one flipping period for three viscosity 
ratios with r3 = 1 and so = 0.694. The r2 corresponding to this r3 and so is 0.245. As 
p'/p increases, the angular motion of the particle approaches that of a rigid ellipsoid. 
For p'/p = 100, the curve is indistinguishable from Jeffery's solution for a rigid 
particle. As p'/p approaches the threshold for stationary orientation (about 2.78 in 
this case, cf. figure 4) ,  the motion becomes more jerky, with the particle spending a 
greater proportion of its temporal period with its major axis aligned with the flow. 

Figure 8 is a plot of the diinensionless flipping period KT vs. the viscosity ratio 
p ' / p  for an oblate spheroid (r3 = 1)  with so = 0.694 (r2 = 0.245). For large values of 
the viscosity ratio it is easily shown from (67), (68) and (83) that the flipping period 
becomes Jeffery's result for a rigid ellipsoid: 

which is equal to 13.59 for r2 = 0.245. As the viscosity ratio decreases it is seen that 
the period of flipping increases and becomes infinite as p ' / / ~  approaches the transition 
value, which is 2.78 for the case shown. 

KT = n(r2 + rT2) ,  (84) 

7. Summary and concluding remarks 
The present theoretical analysis provides a useful model for understanding several 

feat,ures of the observed motions of human red blood cells in a shear field. The most 
st,riking feature of the observed behaviour is that, under the proper circumstances, 
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( r  ~ t o  ) / T  

FIGURE 7 .  Angular orientation of an oblate spheroid ( T ~  = 1.000) over one flipping period for 
three viscosity ratios with so = 0.694 (r2 = 0.245). The curve p'/p = 100 coincides with 
Jeffery's (1922) solution for rigid ellipsoids. 

a red blood cell may assume a stationary shape and orientation while the membrane 
and cell contents perform a tank-tread motion. Under other circumstances, the red 
cell is observed to have a flipping motion. The theoretical analysis indicates that the 
type of motion that occurs may be determined from a knowledge of the values of three 
parameters. These are: the ratio of the middle to major axes of an ellipsoid which 
represents the red cell, the sphericity index, and the ratio of the internal to external 
liquid viscosities. 

The theory indicates that decreasing the viscosity ratio or increasing the elongation 
of the particle promotes a stationary orientation, with the opposite variations inducing 
the flipping motion. This is in agreement with the observation that increasing the 
suspending-medium viscosity, which is the usual experimental technique, brings about 
tank-treading of a human red cell at a stationary orientation. Decreasing the sphericity 
index is predicted to favour the flipping motion, with the opposite variation tending 
to  cause the stationary orientation. The effect of these variations on the type of motion 
exhibited by a red cell has not yet been experimentally examined. 

When the model particle assumes a stationary orientation, the angle of inclination 
is between 0" and 45", and the tank-treading frequency is constant. The theory 
implies that the angle and tank-treading frequency generally decrease with increasing 
elongation. The range of the predicted angles and tank-treading frequencies and their 
behaviour with increasing elongation are in agreement with experimental observations 
on the human red cell. The theory also suggests that the angle of inclination and tank- 
treading frequency decrease with increasing viscosity ratio or decreasing sphericity 
index. These trends are consistent with the experimental observations. 

When the model particle flips, it also tank-treads, with the direction and frequency 
of the tank-tread motion varying with the angular position of the particle. The exist- 
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FIGURE 8. Dimensionless flipping period KT for an oblate spheroid ( rQ = 1.000) 
with go = 0.694 (r2 = 0.245) us. viscosity ratio p’/p. 

ence of this oscillatory tank-tread motion while a red blood cell is flipping has not been 
observed, although flipping is easily seen. The theory indicates that as the viscosity 
ratio increases the particle flips increasingly like a rigid ellipsoid, and in the limit the 
motion becomes Jeffery’s solution. As the viscosity ratio decreases, however, the 
period of flipping and time spent aligned with the flow are predicted to increase, with 
the particle eventually assuming a stationary orientation. The details of this transition 
from flipping motion to stationary orientation also have not yet been experimentally 
investigated, 

The present analysis might be made a more realistic model for red blood cells by 
several improvements which have to do mostly with the shape and properties of the 
membrane. In  the present study, the shape of the particle has been assumed to be an 
ellipsoid. I n  a more-complete theory, this shape would be determined instead by the 
stresses acting on the membrane and its elastic properties. This is a formidable problem 
in large-deformation shell theory, but an approximate treatment considering the net 
axial force exerted on each half of the cell might provide a sufficiently accurate solution. 

In  addition, the rate of energy dissipation in the membrane should be included in a 
more complete model. This perhaps can be calculated directly from the membrane 
motion and its viscous properties. Also, to be realistic, the membrane motion itself 
needs to be revised so that it is area-preserving in a local sense because this is a salient 
feature of red-blood-cell membranes. 

The improvements mentioned above are not expected to alter the qualitative nature 
of the results predicted and may have relatively small quantitative effects. 
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